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1. Introduction 
To recapture the benefits of DSP established in a variety of RF application domains in the last decades one has to be 
able to operate on the optical field vector as opposed to the optical energy.  This approach enables deployment of 
digital coherent communications and interferometric sensing applications but requires overcoming a myriad of 
technological and architectural challenges of which their proposed solutions are described in this paper. In [1], we 
discussed the key methods in secure digital coherent free-space optical communications for tactical applications. 

 

Fig. 1. Digital coherent integrated Homodyne Receiver for linear transformation of an encoded optical signal to base-band. Top view 
shows a picture of the fabricated and a tested device is shown on bottom right. Only one polarization is shown for simplicity 

Fig. 1 depicts an integrated Homodyne Receiver we fabricated and tested. The received optical signal is split into 
two (arbitrary) orthogonal polarizations (H’ and V’ were only one is shown for clarity) and each is mixed with a 
local oscillator in an optical 90° hybrid. The hybrid accepts the signal S and the local oscillator L and produces four 
outputs: (i) S+L, (ii) S-L, (iii) S+jL and (iv) S-jL. Each of the optical output pairs (i)-(ii) and (iii)-(iv) is collected by 
a pair of matched photodiodes whose photocurrents are subtracted to produce output currents proportional to 
|S+L|2-|S-L|2=4·Re{SL*} and |S+jL|2-|S-jL|2=4·Im{SL*}, together constructing the complex value SL*. Following this 
linear transformation the signals are electrically filtered, sampled and then processed digitally as described in [1] . 
The key advantages of this coherent detection scheme are: (i) The received signal is boosted by the local oscillator 
for highest shot-noise limited receiver sensitivity; (ii) An inherently frequency-selective receiver using an agile local 
oscillator; and (iii) Linear down-conversion to electrical baseband which enables adaptive DSP-based noise 
reduction algorithms. The linear transformation allows for changing the order of compensation thus enabling 
backend digital adaptive algorithms to compensate for a variety of noise sources thus eliminating traditional 
complex “front-end” optical techniques such as optical phase locking and polarization compensation. Furthermore, 
adaptive stabilization of the interferometric components to maintain their operational points is solved as described in 
detail in [2] and further discussed in Sec. 3. 
The key benefit of the linear transformation described above results from the ability to operate on the field vector 
thus enabling the digital adaptive compensation of various phase noise induced by physical phenomena such as: (i) 
Platform vibrations; (ii) Doppler shift; (iii) Polarization rotation and birefringence, (iv) High speed air turbulence 

Local Oscillator

Balanced
Detectors 
and TIAs

LS +

HtjelAL
rω= jLS +

=ℜ }*{SL

jLS −

LS −
=ℑ }*{SL )sin(φsAlA

)cos(φsAlA

Phase
Signal boosted by
Local Oscillator

Optical Hybrid
Signal

Polarization

HtjesAS
r)( φω +=

PhaseFrequency
Amplitude

• Analog to Digital
Conversion

• Digital Processing

• Advanced 
Algorithms

I(t)

Q(t)Local Oscillator

Balanced
Detectors 
and TIAs

LS +

HtjelAL
rω= jLS +

=ℜ }*{SL

jLS −

LS −
=ℑ }*{SL )sin(φsAlA

)cos(φsAlA

Phase
Signal boosted by
Local Oscillator

Optical Hybrid
Signal

Polarization

HtjesAS
r)( φω +=

PhaseFrequency
Amplitude

• Analog to Digital
Conversion

• Digital Processing

• Advanced 
Algorithms

I(t)

Q(t)Local Oscillator

Balanced
Detectors 
and TIAs

LS +

HtjelAL
rω= jLS +

=ℜ }*{SL

jLS −

LS −
=ℑ }*{SL )sin(φsAlA

)cos(φsAlA

Phase
Signal boosted by
Local Oscillator

Optical Hybrid
Signal

Polarization

HtjesAS
r)( φω +=

PhaseFrequency
Amplitude

Signal

Polarization

HtjesAS
r)( φω +=

PhaseFrequency
Amplitude

• Analog to Digital
Conversion

• Digital Processing

• Advanced 
Algorithms

I(t)

Q(t)

       CWC1.pdf
    



induced fading and scintillation that cannot be compensated by adaptive optics; and (v) Electronic beam-steering. 
These advantages are discussed in [1] and in Sec. 4. 
2. Layered Architecture for Digital Coherent Communications and Sensing  
A unified layered architecture for fieldable digital coherent interferometric communications and sensing is depicted 
in Fig. 1. The layered architecture is based on two integrated optical components that enable the embodiment of a 
generalized transponder consisting of Synthesizer and Analyzer constructs each consisting of three layers: (i) An 
Optical layer, composed of an integrated Quadrature Modulator and a Homodyne Receiver that performs the  linear 
transformation of coherent optical signals to/from electrical base-band; (ii) Stabilization layer that maintains the 
optical components at an optimized operating point; and (iii) Adaptive DSP-based noise cancellation to compensate 
for multiplicative phase noise resulting from platform vibration, Doppler shift, polarization rotation, fading and 
scintillation as detailed in Sec. 4 and [1]. 

 
Fig. 2. A unified layered architecture for fieldable digital coherent interferometric communications and sensing. 

In the case of free space optical communications the Synthesizer provides: Agile synthesis of key-based multi 
dimensional hopping in time, frequency, polarization state, coherent modulation scheme (e.g. M-PSK, M-QAM) and 
symbol rate to adapt to an optimal combination of security against jamming and eavesdropping, spectral efficiency 
and atmospheric conditions in the tactical environment. 
In the latter application the Analyzer embodies: Coherent detection of a generalized key-based multi-dimensionally 
hopped coherent optical signal via a generalized Homodyne Polarization Diversity Receiver with DSP-based 
adaptive algorithms that digitally extract the information content from both channel noise and key-based multi 
dimensional optical scrambling without the use of optical frequency and polarization tracking and unwinding. 
Furthermore, for improved security and flexibility, this approach does not require a fixed DWDM-like channel 
structure, but instead takes advantage of contiguous gridless selection of any optical carrier frequency based on the 
atmospheric conditions and tactical operational needs as described in [1]. High spectral efficiency fiber based 
coherent communications utilizing our components are described in [3], [4] and an OCDMA approach in [5]. 
By co-locating the synthesizer and analyzer and sharing a common optical local oscillator one can design 
interferometric sensing applications such as Coherent LADAR or Vibrometery using a common layered architecture 
with the unique ability to switch applications via software control. 
3. Stabilization of Integrated Interferometric Optical Components  
Both interferometric components were designed, fabricated and tested with closed loop stabilization of their 
operating point for uninterrupted up/down linear conversion of base-band electrical signals of up to 12.5 
GSymbols/s. A stabilization algorithm for our Quadrature Modulator (QM) is described in [2] and shown in Fig. 3. 
Both simulation and experimental results for generation of 12.5 GSym/s of QPSK signals are described in [2]. The 
stabilization algorithm shows a 1-dB sensitivity penalty compared with manual adjustment of the QM via 
minimization of the BER. Similar stabilization algorithms were developed and tested for the Homodyne Receiver 
and will be reported at the conference. Further improvement of stabilization algorithms to accommodate 
interferometric sensing is planned. 
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Fig. 3. Constellation plots of the QM optical output at startup (a) and after 50 iterations of the control loop (b). Plot of deviations of the two 
biases and phase from their optimal points (π and π/2) versus iteration number are shown in (c). 

4. Adaptive Noise Reduction Algorithms  
In [1] we discussed digital adaptive noise reduction algorithms for compensation of various physical phenomena. 
Fig. 4(a) shows schematically the architectural approach as applied to channel compensation of air turbulence for 
free space coherent QPSK communications. Fig. 4(b) shows simulated results of a free space QPSK optical link 
operating over a high speed turbulent channel before and after adaptive noise reduction as well as the time 
convergence track.  

 
(a) (b) 
Fig. 4(a) Digital adaptive algorithms embodiment; and (b) Performance of the channel equalization algorithm over a turbulent atmospheric 
channel. 

5. Interferometric Sensing 
By co-locating the synthesizer and analyzer with an optical local oscillator derived from the transmitting laser, the 
transponder configuration turns into an interferometric sensing system enabling application domains such as 
Coherent LADAR and Vibrometery, and remote chemical detection; all using a unified layered architecture with the 
unique ability to adapt, reconfigure, and switch coherent applications via software control.  
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